Mining Frequent Queries in Star Schemes
نویسندگان
چکیده
Résumé. L’extraction de toutes les requêtes fréquentes dans une base de données relationnelle est un problème difficile, même si l’on ne considère que des requêtes conjonctives. Nous montrons que ce problème devient possible dans le cas suivant : le schéma de la base est un schéma en étoile, et les données satisfont un ensemble de dépendances fonctionnelles et de contraintes référentielles. De plus, les schémas en étoile sont appropriés pour les entrepôts de données et que les dépendances fonctionnelles et les contraintes référentielles sont les contraintes les plus usuelles dans les bases de données. En considérant le modèle des instances faibles, nous montrons que les requêtes fréquentes exprimées par sélection-projection peuvent être extraites par des algorithmes de type Apriori.
منابع مشابه
بهبود الگوریتم انتخاب دید در پایگاه داده تحلیلی با استفاده از یافتن پرس وجوهای پرتکرار
A data warehouse is a source for storing historical data to support decision making. Usually analytic queries take much time. To solve response time problem it should be materialized some views to answer all queries in minimum response time. There are many solutions for view selection problems. The most appropriate solution for view selection is materializing frequent queries. Previously posed ...
متن کاملEfficient Processing of Streams of Frequent Itemset Queries
Frequent itemset mining is one of fundamental data mining problems that shares many similarities with traditional database querying. Hence, several query optimization techniques known from database systems have been successfully applied to frequent itemset queries, including reusing results of previous queries and multi-query optimization. In this paper, we consider a new problem of processing ...
متن کاملAn Efficient Computation of Frequent Queries in a Star Schema
Although the problem of computing frequent queries in relational databases is known to be intractable, it has been argued in our previous work that using functional and inclusion dependencies, computing frequent conjunctive queries becomes feasible for databases operating over a star schema. However, the implementation considered in this previous work showed severe limitations for large fact ta...
متن کاملConcurrent Processing of Frequent Itemset Queries Using FP-Growth Algorithm
Discovery of frequent itemsets is a very important data mining problem with numerous applications. Frequent itemset mining is often regarded as advanced querying where a user specifies the source dataset and pattern constraints using a given constraint model. A significant amount of research on frequent itemset mining has been done so far, focusing mainly on developing faster complete mining al...
متن کاملConstraint-Based Discovery and Inductive Queries: Application to Association Rule Mining
Recently inductive databases (IDBs) have been proposed to afford the problem of knowledge discovery from huge databases. Querying these databases needs for primitives to: (1) select, manipulate and query data, (2) select, manipulate and query “interesting” patterns (i.e., those patterns that satisfy certain constraints), and (3) cross over patterns and data (e.g., selecting the data in which so...
متن کامل